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IDEALS IN GROUP RINGS OF FREE PRODUCTS 

BY 

E D W A R D  F O R M A N E K  AND A. I. L ICHTMAN 

ABSTRACT 
Let G be a group and RG be its group ring. If A is a nonzero ideal of RG, we 
prove that for certain normal subgroups H of G, including all nontrivial 
subgroups of G when G is a free product, A O R H ~  O. 

Suppose R is a ring (associative with unit), G is a group, and N is a subgroup 

of G. An intersection theorem for the group ring R G  is a theorem which asserts, 

under suitable hypotheses, that every nonzero ideal of R G  has a nonzero 

intersection with R N .  The most notable intersection theorem is that of Zalesski 

for solvable groups [1, p. 364]. It plays a crucial role in the solution of the 

semisimplicity problem for group rings of solvable groups by Hampton,  Passman 

and Zalesski [cf. 1, p. 332]. Several other examples and applications of 

intersection theorems can be found in [1]. 

In this paper we prove an intersection theorem for certain normal subgroups 

of G, including all nontrivial normal subgroups of G when G is a free product. 

Before stating these theorems we introduce the following notation. 

Let R be a ring, G a group, N a subgroup of G, and g E G. 

Crc(g) = centralizer of g in N;  

D N ( G ) =  {g E G [ IN :  CN(g)l<~176 

A ( G ) =  C o ( N ) =  {g E G [ IG : C~(g)l < oo}. 

If a = a~g~ + �9 �9 �9 + a,,gn E R G ,  where gl , .  �9  g, are distinct elements of G and 

a~, �9 �9 �9 a, are nonzero elements of R, then the support of a, supp(a) ,  is the set 

{g,...,g.}. 
Our main results are the following two theorems. 
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THEOREM 1. Let R be a domain (not necessarily commutative), G a group, 

and N a normal subgroup of G. Suppose that D N ( G ) =  1. Then A n R N ~ O  

whenever A is a nonzero ideal of RG.  

We remark that if N is a normal subgroup of G, then D N ( G )  = I if and only if 

C~, ( G ) =  1 and A(N)=  1. 

THEOREM 2. Let R be a domain (not necessarily commutative), G = H * K a 

nontrivial free product, and N ~ 1 a normal subgroup of G. Then A n R N  ~ 0 

whenever A is a nonzero ideal of RG.  

The proof of Theorem 1 is based on the next lemma, which is essentially the 
same as lemma 2 of [2]. However, we include a proof. 

LEMMA 3. Let R be a domain, G a group, N a subgroup o[ G, and a, fl nonzero 

elements of  R G  with supp(a) ~ supp(fl). Suppose ax[3 = [3xa for all x ~ N. Then 
D~(G)~  1. 

PROOF. Let s u p p ( a ) = { g ~ , . . . , g , } ,  supp ( f l )={h~ , - . . , h , } .  By rearranging 

indices and interchanging a and fl if necessary, we may assume that 

g~ ~ supp(/3). 

Whenever g?~gl and h~h7 ~ ( i , j~  1), are conjugate by an element of N, choose 

u~j E N such that 
u ~l(g ?~g~)u,j = h~h ~; 

and whenever h ?lg~ and gjh ~ are conjugate by an element of N, choose v~j C N 

such that 
v ~(h  ?~ g~)vq = g~h ~. 

Now suppose x ~ N and consider 

a x [ 3  - [ 3 x a  = O. 

Since gl E supp(a) ,  h~ E supp(/3), a cancellation of the p?oduct glxh~ must occur 

in the preceding equation (here the hypothesis that R is a domain is used 

implicitly). This means that either 

(1) g~xh~ = g~xhj, where i , j ~  1, or 

(2) glxh, = h,xgj 

for some i and j. If (1) occurs, then x E C~(g~g~)uo and if (2) occurs, then 

x E CN (h ?~g~)v~j. Since this is true for any x E N, N is a union of finitely many 

right cosets of the finitely many subgroups C~,(g?~ga), ( i~  1), Cu(hT~gl). 

This implies [1, p. 120] that one of these subgroups has finite index in N, and 

hence that either some gr,~g~ ( i~  1) or some hi~g~ lies in DN(G). Since 



Vol. 31, 1978 IDEALS IN GROUP RINGS 103 

gl ~ s u p p ( / 3 ) = ( h l , ' " , h , } ,  these elements  are all nontrivial. Hence  

D N ( G ) ~  1. �9 

PROOFOF THEOREM 1. Let {gi} be a set of coset representatives of N in G with 

1 E {g,}. Then every nonzero element  of R G  has a unique expression of the form 

u = u , g l  + �9 �9 �9 + u . g . ,  

where ul , . "  ", u, are nonzero elements  of R N  and g l , ' "  ", g, E {g,}. Call n -> 1 

the length of u, and let u be a nonzero element  of A whose length is minimal. By 

right multiplying u by g~-i it may be assumed that g~ = 1. 

We claim that u has length 1. For suppose conversely that 

1A = U1+ u2g2 + "" " +  u . g .  

has length n ~ 2. Note that supp(ua) ~ supp(u2g2) since g~ = 1 and g2 represent 

distinct cosets of N in G. Since D u ( G ) =  1, the lemma asserts that there is an 

x E N such that ulxu2g2 ~ u2g2xu~. Consider 

ulxu - uxu~ = (u~xu2g2- u2g2xul) + ..  . + (u~xu,g. - u,g,xuO 

= (u lxu2-  u2gzxu~g~)g2 + . . .  + ( U l X U  n - u,g,xu~g~)g,. 

This element lies in A, is nonzero (since u~xuz ~ u2g2xu~g~') and has length < n, 

contradicting the minimal choice of u. 

Thus u has length 1, so u is a nonzero element  of A N RN.  �9 

PROOF OF THEOREM 2. We have to consider two cases separately, G ~ Z2* Zz 

and G = Z2 * Z2. Note  that if G ~ Z2 * Z2, then A(G) = 1 and no normal  subgroup 

of G is isomorphic to Z. 

Case L G ~ Z 2 * Z 2 .  W e c l a i m t h a t D u ( G ) = l .  F o r s u p p o s e t h a t x E D ~ ( G )  

and let L = (N, x). L cannot be conjugate to a subgroup of a free factor of G 

since it contains N, a normal subgroup of G, and L ~ Z or Z2* Z2 since either 

possibility implies that G has a normal  subgroup isomorphic to Z. Hence  by the 

Kurosh subgroup theorem L is a nontrivial free product.  Since L ~  Z2*Z2, 

A ( L ) =  1. Thus x = 1 since x ~ A(L), and so D ~ ( G ) =  1. 

Applying Theorem 1 then gives the desired result. 

Case II. G = Z2* Z2. Then G is infinite dihedral and has a presentation 

G = (g,h Ihgh- '= g- ' ,h  ~= 1). 

Since N is a normal subgroup of G, N _--- (g ' )  for some positive integer t. We 

show that A fq R N ~  0 by a series of reductions: 

(1) A 0 S G ~  O, where S is a commutat ive  subring of R. 
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(2) A n s (g) / 0. 

(3) A n S ( g ' ) • O .  

First, choose  a nonzero  e lement  

a = a,g~ + . . .  + a,g.  (ai E R,  g, E G )  

of A whose  support  is minimal. If some at and at do not  commute ,  then 

ota, - a,a = (ala, - a,al)gl + ' "  + (a.a, - a,a,)g.  

is a nonzero  e lement  of A whose support  is properly smaller than supp(ot).  

Hence  all the at commute ,  and we can restrict ourselves to the commuta t ive  

subring S (with unit) of R genera ted  by a , . . - , a . .  

Since {1, hJ is a set of coset representat ives  for  (g)  in G, ot can be written 

a = fl + ~,h, 

where /3, y E S(g) .  I f /3  = 0, then ah is a nonzero  e lement  of A n S ( g )  and if 

y = 0, then ot is a nonzero  e lement  of A n S(g) .  If /3,  y ~  0, note  that ei ther  

h f lh - '  ~ / 3  or  h(g/3)h -~ ~ gfl. In any case, by replacing ot by got if necessary we 

may suppose that /3~ h/3h -1. Then 

a y  - v h a h  -~ = (/3 + v h ) v  - vh( f l  + yh )h -~ 

= (/3 - h/3h-~)y 

is a nonzero  e lement  of  S(g) .  Thus A n S ( g ) / O .  

Finally, we need only observe  that any nonzero  ideal of  S ( g )  has a nonze ro  

intersection with S ( g ' )  (t >- 1), because S ( g )  is a commuta t ive  domain  integral 

over  S (g ' ) .  This is an e lementary  fact f rom commuta t ive  algebra. �9 
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