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IDEALS IN GROUP RINGS OF FREE PRODUCTS

BY
EDWARD FORMANEK AND A. 1. LICHTMAN

ABSTRACT
Let G be a group and RG be its group ring. If A is a nonzero ideal of RG, we
prove that for certain normal subgroups H of G, including all nontrivial
subgroups of G when G is a free product, A N RH#0.

Suppose R is a ring (associative with unit), G is a group, and N is a subgroup
of G. An intersection theorem for the group ring RG is a theorem which asserts,
under suitable hypotheses, that every nonzero ideal of RG has a nonzero
intersection with RN. The most notable intersection theorem is that of Zalesski
for solvable groups [1, p. 364]. It plays a crucial role in the solution of the
semisimplicity problem for group rings of solvable groups by Hampton, Passman
and Zalesski [cf. 1, p. 332]. Several other examples and applications of
intersection theorems can be found in [1].

In this paper we prove an intersection theorem for certain normal subgroups
of G, including all nontrivial normal subgroups of G when G is a free product.
Before stating these theorems we introduce the following notation.

Let R be a ring, G a group, N a subgroup of G, and g €G.

Cn(g) = centralizerof g in N;
Dn(G)={g € G||N:Cn(g)|<};
A(G)=Co(N)={g € G ||G:Cs(g)| <}

Ifa =ag:+:---+ a.g. € RG, where gy, - -, g, are distinct elements of G and
a,, -, a, are nonzero elements of R, then the support of «, supp(a), is the set

(g1, ", 8n)-
Our main results are the following two theorems.
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THEOREM 1. Let R be a domain (not necessarily commutative), G a group,
and N a normal subgroup of G. Suppose that Dn(G)=1. Then ANRN#(
whenever A is a nonzero ideal of RG.

We remark that if N is a normal subgroup of G, then D~ (G) = 1 if and only if
Cyv(G)=1and A(N)=1.

THEOREM 2. Let R be a domain (not necessarily commutative), G = H*K a
nontrivial free product, and N# 1 a normal subgroup of G. Then A N RN#0
whenever A is a nonzero ideal of RG.

The proof of Theorem 1 is based on the next lemma, which is essentially the
same as lemma 2 of [2]. However, we include a proof.

LemMa 3. Let R be a domain, G a group, N a subgroup of G, and a, B nonzero
elements of RG with supp(a) # supp(B). Suppose ax8 = Bxa for all x € N. Then
Dn(G)#1.

Proor. Let supp(a)={gi,-- -, g}, supp(B)={hy,- -, h.}. By rearranging
indices and interchanging « and B if necessary, we may assume that
g: & supp(B).

Whenever g;'g, and hhi' (i,j # 1) are conjugate by an element of N, choose
u; € N such that

u;'(gi'g)uy = hhi';
and whenever h;'g; and gh7' are conjugate by an element of N, choose v, € N
such that
vy (hi'g)oy = ghi".
Now suppose x € N and consider

axB — Bxa =0.

Since g, € supp(a), h, € supp(B), a cancellation of the pPoduct g,xh, must occur
in the preceding equation (here the hypothesis that R is a domain is used
implicitly). This means that either

(1) gixh,= gxh;, where i,j# 1, or

(2) gixh,= hixg
for some i and j. If (1) occurs, then x € Cn(g;'g:)u; and if (2) occurs, then
x € Cn(hi'gy)vy. Since this is true for any x € N, N is a union of finitely many
right cosets of the finitely many subgroups Cn(g:'g1), (i# 1), Cn(hi'gy).

This implies [1, p. 120] that one of these subgroups has finite index in N, and
hence that either some g:'g, (i#1) or some h;'g, lies in Dn(G). Since
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g1 €supp(B)=1{hs,---,h.}, these elements are all nontrivial. Hence
Dn(G)#1. a

Proor oF THEOREM 1. Let {g:} be a set of coset representatives of N in G with
1€ {g:}. Then every nonzero element of RG has a unique expression of the form

u= ulgl+"'+ungny
where uy, - - -, u, are nonzero elements of RN and g,,---,g. €{g}. Call n =1
the length of u, and let u be a nonzero element of A whose length is minimal. By
right multiplying u by gi' it may be assumed that g, = 1.
We claim that u has length 1. For suppose conversely that

U= Uit Usgrt+ UnBn

has length n = 2. Note that supp(u,) # supp(u.g.) since g; = 1 and g, represent
distinct cosets of N in G. Since Dy (G) = 1, the lemma asserts that there is an
x € N such that u,xu,g, # u.g.xu,. Consider

wixu — uxu; = (U1 XUzgs — Us@oXUy) + - -+ + (U1XUGw — UngnXU1)
= (UrXUz — UsgoXU183 )2+ - - + (Un XUy — UngoX U187 )En

This element lies in A, is nonzero (since uixu, # u,g.xu,g>') and has length <n,
contradicting the minimal choice of u.
Thus u has length 1, so u is a nonzero element of A N RN. |

ProoF of THEOREM 2. We have to consider two cases separately, G# Z,*Z,
and G = Z, * Z,. Note that if G # Z,* Z,, then A(G) = 1 and no normal subgroup
of G is isomorphic to Z.

Case I. G#Z,*Z,. We claim that Dyv(G) = 1. For suppose that x € Dn(G)
and let L = (N, x). L cannot be conjugate to a subgroup of a free factor of G
since it contains N, a normal subgroup of G, and L # Z or Z,* Z, since either
possibility implies that G has a normal subgroup isomorphic to Z. Hence by the
Kurosh subgroup theorem L is a nontrivial free product. Since L # Z,*Z,,
A(L)=1. Thus x =1 since x € A(L), and so Dx(G)=1.

Applying Theorem 1 then gives the desired result.

Case I. G =1Z,*Z, Then G is infinite dihedral and has a presentation

G=(gh|hgh'=g " h*=1).

Since N is a normal subgroup of G, N =(g") for some positive integer t. We
show that A N RN# 0 by a series of reductions:
(1) ANSG#0, where S is a commutative subring of R.
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(2) ANS(g)#0.
B) ANS(g"H#o0.
First, choose a nonzero element

a=a,g1+"'+ang.. (aiER,giEG)
of A whose support is minimal. If some a; and a; do not commute, then
aa, — ax = (@16 — aa)g + - + (a.a; — aia.)gn

is a nonzero element of A whose support is properly smaller than supp(a).
Hence all the a; commute, and we can restrict ourselves to the commutative
subring S (with unit) of R generated by a,,* -, a..

Since {1,h} is a set of coset representatives for (g) in G, @ can be written

a =+ yh,

where B,y € S(g). If B =0, then ah is a nonzero element of A N S(g) and if
vy =0, then « is a nonzero element of A N S{g). If B, vy# 0, note that either
hBh~'# B or h(gB)h ™' # gB. In any case, by replacing a by ga if necessary we
may suppose that 8# hBh~'. Then

ay ~yhah™ = (B + yh)y — yh(B + yh)h™'
=(B—hBh7)y

is a nonzero element of S{g). Thus A N §(g)#0.

Finally, we need only observe that any nonzero ideal of $(g) has a nonzero
intersection with S{g‘) (t = 1), because S(g) is a commutative domain integral
over §{(g"). This is an elementary fact from commutative algebra. [
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